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What are we doing today?

• Today we focus on certain key features pertaining 

to the VAR type techniques.

• We are effectively extending our previous 

univariate forecasting analysis to the multivariate, 

before we delve into the intricacies of a system of 

equations approach



VAR

• Vector Autoregressions (VARs) are natural extensions of 

the univariate AR models discussed earlier.

• More specifically, these models, made popular by Sims 

(1980), can be considered as a hybrid between the 

univariate case and the simultaneous equations case 

discussed later.

• In this regard, VARs have often been considered as an alternative 

to the parameter intensive use of simultaneous equations



VAR

• Simply put, VAR models take a list of series and regresses each on its own 

past values as well as lags of all the other series in the list.

• A VAR model is thus a system where all the included variables are 

considered endogenous, with an equation for each variable (although we can 

also include exogenous variables to these endogenous equations to add to 

the predictability of the model).

• VAR modelling does not require as much knowledge about the factors 

influencing variable interaction as structural models with simultaneous 

equations do.

• The only prior knowledge required is the list of variables (not needing to be exhaustive) 

that influence each other, as well as the amount of lags to include.

• The data thus speaks for itself



VAR

• Vector Autoregression systems are widely used tools for 

forecasting systems that have interconnected time-series 

components. 

• These systems allow the modeller to analyse the dynamic impact of 

random shocks on the system of more than one variable.

• This simplified means of forecasting does not require any 

structural modelling specification (as implied in the last section’s 

work)– as it treats the endogenous variables merely as functions of 

lagged values of itself and other variables.



VAR

• The idea is that VARs then let the data speak for itself.

• Although this might seem like a good idea, there are many 

instances where this approach is not ideal. In particular, it 

does not allow for much insight into individual parameter 

significance tests – and often suffers from the curse of high 

dimensionality (particularly if the endogenous variables are 

many, and the amount of lags used are high)…



VAR

• The generic form looks as follows:

𝑦𝑡 = 𝛽1𝑦𝑡−1 +⋯+ 𝛽𝑘𝑦𝑡−𝑘 + 𝛼. 𝑥𝑡 + 𝜀𝑡

With:

𝑦𝑡 = a vector of N-endogenous variables

𝑥𝑡 = a vector of exogenous variables

𝛽 & 𝛼 = parameter matrices to be estimated

𝜀 = vector of shocks – which may be contemporaneously 

correlated (with the other equations), but should be 

uncorrelated with its own lagged values & RHS variables



VAR

• Let’s consider again the bivariate case of VAR:

𝑦1,𝑡 = 𝛽1,0 + 𝛽11. 𝑦1,𝑡−1 + 𝛽12. 𝑦2,𝑡−1 + 𝜀1,𝑡

𝑦2,𝑡 = 𝛽2,0 + 𝛽21. 𝑦2,𝑡−1 + 𝛽22. 𝑦1,𝑡−1 + 𝜀1,𝑡

Or in matrix form:

𝑦1,𝑡
𝑦2,𝑡

=
𝛽1,0
𝛽2,0

+
𝛽11 𝛽12
𝛽21 𝛽22

𝑦1,𝑡−1
𝑦2,𝑡−1

+
𝜀1,𝑡
𝜀2,𝑡



VAR

• Can the VAR system include contemporaneous terms? The previous 

system only included lags… The problem is that in many cases we should 

control for a contemporaneous feedback effect. Is this possible?

𝑦1,𝑡 = 𝛽1,0 + 𝛽11. 𝑦1,𝑡−1 + 𝛽12. 𝑦2,𝑡−1 + 𝛼12𝑦2,𝑡 + 𝜀1,𝑡

𝑦2,𝑡 = 𝛽2,0 + 𝛽21. 𝑦2,𝑡−1 + 𝛽22. 𝑦1,𝑡−1 + 𝛼21𝑦1,𝑡 + 𝜀1,𝑡

Or in matrix form:

𝑦1,𝑡
𝑦2,𝑡

=
𝛽1,0
𝛽2,0

+
𝛽11 𝛽12
𝛽21 𝛽22

𝑦1,𝑡−1
𝑦2,𝑡−1

+
𝛼12 0
0 𝛼21

𝑦2,𝑡
𝑦1,𝑡

+
𝜀1,𝑡
𝜀2,𝑡



VAR
• Specifying the system as in the previous equation (with the 

contemporaneous variables in), is known as the primitive form, 

and should be re-written as follows to allow estimation:

𝑦1,𝑡
𝑦2,𝑡

=
𝛽1,0
𝛽2,0

+
𝛽11 𝛽12
𝛽21 𝛽22

𝑦1,𝑡−1
𝑦2,𝑡−1

+
𝛼12 0
0 𝛼21

𝑦2,𝑡
𝑦1,𝑡

+
𝜀1,𝑡
𝜀2,𝑡

1 𝛼12
𝛼21 1

𝑦1,𝑡
𝑦2,𝑡

=
𝛽1,0
𝛽2,0

+
𝛽11 𝛽12
𝛽21 𝛽22

𝑦1,𝑡−1
𝑦2,𝑡−1

+
𝜀1,𝑡
𝜀2,𝑡

𝐴.
𝑦1,𝑡
𝑦2,𝑡

=
𝛽1,0
𝛽2,0

+
𝛽11 𝛽12
𝛽21 𝛽22

𝑦1,𝑡−1
𝑦2,𝑡−1

+
𝜀1,𝑡
𝜀2,𝑡

𝑦1,𝑡
𝑦2,𝑡

= 𝐴−1
𝛽1,0
𝛽2,0

+ 𝐴−1
𝛽11 𝛽12
𝛽21 𝛽22

𝑦1,𝑡−1
𝑦2,𝑡−1

+ 𝐴−1
𝜀1,𝑡
𝜀2,𝑡

(if A is invertible)



VAR

• Of course the primitive form of the model cannot be estimated (as 

it is not identified and would lead to simultaneity problems), and would 

require us to restrict the model by setting either 𝜶𝟏𝟐 or 𝜶𝟐𝟏 = 𝟎.

• This latter specification can then be fitted using OLS if A is invertible, and is known 

as the standard form VAR – and contains no contemporaneous feedback (only lags).

• Ideally the choice of zero specification should be motivated by theory, 

arguing perhaps that 𝑦1 is a significant contemporaneous explainer of 𝑦2

(and not the other way around), and therefore we set 𝛼21 = 0 to yield:

𝑦1,𝑡 = 𝛽1,0 + 𝛽11. 𝑦1,𝑡−1 + 𝛽12. 𝑦2,𝑡−1 + 𝜀1,𝑡

𝑦2,𝑡 = 𝛽2,0 + 𝛽21. 𝑦2,𝑡−1 + 𝛽22. 𝑦1,𝑡−1 + 𝛼21𝑦1,𝑡 + 𝜀1,𝑡

This model can now be specified.



Pros of VARs

• No need for specification of endogenous / exogenous variables as in 

simultaneous equations (all variables are considered endogenous!). 

• Such specifications can be problematic, considering how modellers often fail to motivate why 

certain variables can or should be regarded as exogenous. 

• The VAR approach is more flexible than univariate models, and capture more 

info from data.

• If all RHS variables are lagged, there is no issue of simultaneity as we have in 

simultaneous equation estimates.

• Typically VARs provide comparatively accurate forecasts over higher 

frequencies, considering it has less ad hoc specification restrictions (such as 

specifying exogenous factors).



Cons of VARs

• They are a-theoretical (similar to ARIMA models).

• Difficult to interpret parameters, and possible problem of data mining…

• Deciding on lag lengths to include often leads to arbitrary specifications.

• Often have many parameters to specify as variables included increase.

• If we intend to use hypotheses and significance tests, our regressors need to be 

stationary (i.e. its NB that 𝑿𝒊~𝑰(𝟎)). 

• But differencing can lead to information on the structural behaviour of the series 

being removed: and the idea is really to establish longer term relationships (which 

differencing removes). This trade-off is therefore a tough prospect. 

• However, as we mostly use VARs for forecasting purposes and impulse 

responses, the trends should hold for the short horizon. Therefore it is advised 

that VAR variables not be differenced. This will be returned to later.



Selecting the lag lengths

• Selecting lag lengths for VAR models can at times seem like an 

arbitrary exercise. Note that this might be very important, as the 

parameter space grows rapidly if too many lags are included. 

• Note that the problem of lag selection is more complex than simply 

running an F-test. In particular, the test requires a procedure to test 

the coefficients on a set of lags on all variables for all equations at 

the same time (which the F-test obviously fails to do!).

• This can, however, be done using a Likelihood Ratio test –

specifying an initial amount of lags and then reducing the lag sets each 

time. We then compare the fits using a 𝜒2 statistic. Unfortunately, it 

requires the same sets of lags for both (or more) equations specified



Selecting the lag lengths

• Another less restrictive method that we can use to evaluate the 

appropriate lag lengths is by using information criteria, similar 

to those for the univariate case.

• Although we can test the equations separately using the univariate 

criteria (AIC, SBIC, HQIC), we should ideally include it as a system 

with the same lags for all the equations and evaluate the fit using 

the multivariate forms (MAIC, MSBIC, MHQIC).

• Checking this can be done easily in Eviews. After creating a VAR, 

select: 𝑽𝒊𝒆𝒘 − 𝑳𝒂𝒈 𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆 − 𝑳𝒂𝒈 𝒍𝒆𝒏𝒈𝒕𝒉 𝑪𝒓𝒊𝒕𝒆𝒓𝒊𝒂.



Fitting the model in Eviews

• After fitting our VAR model, 

it is reported with the 

coefficient values and the 

corresponding t-values and 

standard errors (not the 

traditional p-values).

• Here I fitted M3 and GDP in 

a VAR scenario



Parameter interpretations

• From the output it can be seen that several parameters are not significant. 

This is common for VARs and symptomatic of its over-parameterization.

• We also do not typically report / interpret the individual coefficients of a 

VAR as we do in other regression models. 

• As mentioned, the purpose of a VAR is not to make policy recommendations on it, as 

the variables are autocorrelated by design (𝑋𝑡−1 will affect 𝑋𝑡 and thus the isolated / 

ceteris paribus impact becomes obscured). 

• E.g., in the output – we should be careful in using the output to 

interpret 𝒎𝟑 −𝟏 ′𝒔 parameter as saying that a 10% increase in M3 

will lead to a 1% decrease in GDP in the next period… There are 

more robust techniques to analyse elasticities, e.g. using GMM 

estimations…



Correlations

• We can view the correlogram graphs (where the SE’s should lie 

within the dotted lines → View / Residual tests / correlograms)

• Note that the residuals of the VAR series can (probably will) be 

contemporaneously correlated, as shown by the residual 

correlation matrix (View / Residuals / Correlation Matrix). 

• Remember: however we assume that they have no lagged correlations 

(autocorrelations)!



How are VARs then used?!

• VARs are mainly used for forecasting and studying impulse 

responses…

• In order to understand the effect that a change in a given variable 

would have on the future values of the other variables, we 

consider three statistics:

• Block F-tests (significance tests for usefulness of variables)

• Impulse response test

• VAR decomposition.

• We will now look at how we can use these to check variable change 

impacts in Eviews.



Uses:

𝟏) Block Significance (Granger Causality)

• With VARs, note that the evaluation of parameter significance occurs on the 

basis of joint tests on all of the lags of a variable in an equation. 

• This is unlike the individual coefficient examination we are used to in univariate 

autocorrelation models.

• Significance tests (i.e. assessing whether a variable’s lags are significant 

explanatory factors in describing another variable) are thus conducted by

restricting all the variables tested’s lags to zero, and then testing whether 

the model is made better by including the lags or not.

• Notice: This requires a joint test (F-test) to be used – which implies by 

definition that the data should be approximately stationary if it were to be 

useful (Typically a strong assumption in VAR estimations…)



Block Significance (Granger Causality)

• These joint lag-significance tests were first proposed by Granger, and is 

often referred to as Granger-causality.

• Note that this is somewhat of a misnomer, as Granger Causality refers 

to:  correlation between the lags of 𝑋 and the current value of 𝑌

• The logic is that if past changes in 𝑋 drives contemporaneous changes in 𝑌, then 

lags of 𝑋 should be significant explanatory factors of 𝑌…

• It does not imply that movements of 𝑿 cause movements of 𝒀!!

Thus if 𝑋 𝒈𝒓𝒂𝒏𝒈𝒆𝒓 𝒄𝒂𝒖𝒔𝒆𝒔 𝑌: The lags of 𝑋 are significant explanatory factors 

in explaining contemporary values of 𝑌.

This can be interpreted as X being useful as an input in forecasting Y



Uses:

2) Impulse responses

• Similar to what we did in the tut for the univariate case, we can now

estimate the impulse responses of a VAR system to see: how a

shock to an endogenous variable permeates through the system into

the future.

• Whereas previously we could only do so by looking at the immediate

past of the variable of interest – we can now study how the change

in a variable’s residuals impact its own and other included variables’

future values in a dynamic sense.

• If the residuals of 𝑋𝑖, 𝜀𝑖, are contemporaneously uncorrelated

to all the other included variables, the interpretation of the impulse

response is straightforward: 𝜀𝑖 only impacts 𝑋𝑖



Impulse responses

• IRs then allow us to understand the interaction effects between the 

variables in a dynamic VAR system. For this, Eviews allows us to trace 

the influence of a one time shock to the shocks on current and future 

values of all the endogenous variables in the system.

• In order to do this, we first need to transform the residual series so that 

the shocks are made orthogonal (attributable then only to 𝜀𝑖).

• This allows us to isolate the impulses and track its influence on future 

values of 𝑋𝑖.

• This is done by restricting the matrix 𝑃:



Impulse responses
For the Bivariate VAR case:

𝑦1,𝑡 = 𝛽1,0 + 𝛽11. 𝑦1,𝑡−1 + 𝛽12. 𝑦2,𝑡−1 + 𝜀1,𝑡

𝑦2,𝑡 = 𝛽2,0 + 𝛽21. 𝑦2,𝑡−1 + 𝛽22. 𝑦1,𝑡−1 + 𝜀2,𝑡

• We can then write:

𝑣𝑡 = 𝑃. 𝜀𝑡~𝑁 0, 𝐷

Where: 𝑣𝑡 → demeaned residual series ; 𝜀𝑡 = (𝜀1,𝑡 ; 𝜀2,𝑡)

𝑫 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥, such that the demeaned residual vector is 

a matrix with off-diagonal values equal to zero – implying the transformed 

residual series now have autocorrelations equal to zero.

The resids are thus isolated to reflect the serially uncorrelated part of the 

residual process (allowing us in turn to isolate the impulses)

𝐷 =

𝑎1 0 0
0 𝑎2 0
0 0 𝑎3



Impulse responses

• Eviews then provides us with several options for the choice of 

the transformation matrix 𝑃.

• The most widely used transformation matrix for conducting 

impulse responses is the Cholesky decomposition.

• This entails for a symmetric matrix 𝐵 (note that VARs have 

equal lags for all included variables), that is positive semi-

definite – it can be decomposed as:

𝐵 = 𝐿𝐷𝐿′ (often referred to as the LDLT decomposition)

𝐿 = Lower triangular matrix

𝐷 = Diagonal matrix (off-diagonal values equal to 0)

(Note that adding the  𝐷 matrix is a variant of the older  𝐿𝐿′ decomp technique)



Impulse responses

• Using the Cholesky decomposition therefore allows us to transform the 

residuals so that the off-diagonal (autocorrelation) components are zero -

implying the impulses are orthogonalized so that we can isolate the shock 

transmissions.

• The problem then arises that ordering matters with this approach of 

isolating impulse responses… This is because the first equation will be 

estimated first, with the residual impact falling on the next, and so on…

• This is thus a recursive process of impulse response analysis in the system –

and changing the ordering could oftentimes dramatically change the 

interpretation (similar to how starting values can dramatically effect the 

outcome of an iterative process like a MLE).



Ordering

• Ideally then theory should suggest the ordering required– which would, by 

design, imply that the first variable’s movement precedes that of the 

second, and so on.

• The importance of ordering is driven by the likely correlations of the 

residuals between the series (if uncorrelated, ordering does not matter).

• An alternative measure would be to use the Generalized Impulses 

technique (Pesaran & Shin, 1998) – whereby an orthogonal set of impulses 

is again imposed, but without order mattering (we won’t go into detail of 

calculating this measure).



Cholesky impulse response for GDP and M3



Variance Decomposition

• In addition to impulse responses, we can decompose the 

variance structure to tell us what proportion of the variance of 

the dependent variable is being explained by its own past shocks, 

and what portion explained by the shocks of the other variables 

in the system.

• I.e. the variance decomposition gives information about the relative 

importance of each variable’s standard errors in affecting the variation of all 

the other endogenous variables in the VAR system.

• Typically own shocks explain most of the forecast error variance 

of the series in a VAR system.

• Note that the impulse response and the Variance decompositions 

provide much of the same information, with the latter focussing on 

second order moments.



Ordering again matters…

• The reason ordering matters also in determining the Forecast Error Variance 

Decomposition, is because of the Cholesky technique typically used again to 

orthogonalise the residuals to allow isolation of second order moment shocks.

• For the Bivariate case, this basically implies:

𝑣1,𝑡
𝑣2,𝑡

=
1 0
𝛼 1

𝑒1,𝑡
𝑒2,𝑡

With 𝑒1,𝑡 & 𝑒2,𝑡 = mutually uncorrelated, White Noise shocks (assumed), and from it we 

can see that that 𝑣1,𝑡 will affect 𝑣2,𝑡, but not the other way around (with the ordering 

implying the direction of initial impact).

Again, the generalized impulse response function here provides estimates of the contemporaneous 

impacts without the restrictions of the Cholesky decomposition (the shocks’ mutual impacts are 

then considered for each separately). 



Variance Decomposition

• Note that the Variance Decomposition technique now used is 

very similar in its approach to the Impulse Response function, and 

also indicate relative importance of shocks on other variables.

• The default Cholesky technique decomposes the one-step ahead forecast 

errors of different lags by the contributions from the various disturbance 

sources.

• This way, we can assess how much of the forecast error of a 

variable can be explained by itself and the other variables in the 

system. (Note: as the generalized approach does not sum to 100%, 

Eviews does not give you the choice to use it in Var decomp analysis…)



Cholesky Decomposition

• Practically, what is happening…?

• As before, Cholesky for the Variance Decompositions imply:

𝑣1,𝑡
𝑣2,𝑡

=
1 0
𝛼 1

𝑒1,𝑡
𝑒2,𝑡

So that:

𝑣1,𝑡
𝑣2,𝑡

=
=

𝑒1,𝑡
𝛼𝑒1,𝑡 + 𝑒2,𝑡

• Now, if 𝛼 is large then it implies that 𝑒1,𝑡 is important in explaining the 

one-step ahead forecast error variance made when forecasting 𝑦2,𝑡 - which 

we take to imply that 𝑦1,𝑡 is important in explaining future variation of 𝑦2,𝑡



Cholesky Decomposition

• The problem with this approach is it restricts the model to assuming 𝑒2,𝑡

cannot influence the one-step ahead forecast error of 

𝑦1,𝑡 𝑐𝑜𝑛𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑛𝑒𝑜𝑢𝑠𝑙𝑦 → thus the one-step ahead forecast error 

variance of 𝑦1,𝑡 in the bivariate VAR case implies the forecast error 

variance decomposition for 𝑦1,𝑡 in the contemporary case (period t) is 

100% explained by 𝑒1,𝑡 and 0% by 𝑒2,𝑡 if the VAR is ordered as: 𝑦1,𝑡 𝑦2,𝑡

(and vice versa) **

• How this problem is approached in practice is by assigning different 

orderings and then checking the robustness of the results considering the 

choice of orderings…

• **NB!! The lags of shocks to 𝒚𝟐,𝒕 : 𝒆𝟐,𝒕 can still affect 𝒚𝟏,𝒕 (but only 

the lags, not the levels…)



Variance Decomposition in Eviews

• Often when the orderings 

are changed, the results and 

interpretations of the 

Impulse Responses and 

Variance Decompositions 

change.

• Thus, again, orderings 

should ideally be motivated 

from theory…





Forecasting

• Again, one of the main benefits of the VAR approach is also its main 

drawback. VARs allow the modeller to “let the data speak for itself” by not 

imposing any restrictions on the data.

• This, however, renders the models effectively useless at providing policy 

recommendations / structural insight into the workings of the relationships 

underlying the dynamics (as the parameter estimates are mostly not used)

• BUT the models are good at forecasting (especially at high frequencies) and also 

at studying dynamic impulse responses and determining Granger causality…

Just don’t expect of it to do more than it should!



The issue of First Differences?!

• Now as you would have picked up from the slides, we make the 

assumption that the residuals of the series, although contemporaneously 

correlated by definition, should not be serially autocorrelated…

• From the univariate studies (and also the system of equations sessions), 

we used FD techniques to account for strong persistence (unit roots). 

• Should we use it for VAR analyses?

• Engle and Granger (1987) suggested caution– if the series are I(1) and co-

integrated, using first differences would lead to a misspecified VAR.

• This follows as their long-run relationship (as measured by the co-

integration function) is omitted and leads to bias!



First Differences in VARs?

• This misspecification is often overlooked and FDs are taken without proper 

caution. If the variables are, however, not cointegrated → FDs can be taken.

• In fact, Stock, Sims and Watson showed in 1990 that the process would be 

assymptotically equivalent with / without differencing in the case where 

both are 𝐼 1 , yet are not cointegrated.

• We can think of such an example crudely as: VARs include lagged values, so the 

lag components will take care of the strong persistence…

• For the case when the series included are cointegrated and I(𝟏), we should 

be using the VECM approach to modelling the relationship… (next time)



SVAR

• One of the main advantages of VARs (and for this reason highly commended 

by many econometricians, although it has fallen out of favour in recent years) 

is that it places no stringent prior assumptions on the model. 

• All variables are considered endogenous and the data can speak for itself (at 

the cost of loss of interpretation potential / policy advice).

• To conduct a more structural approach, however, the modeller needs to 

place certain restrictions on how the variables affect each other. 

• For this reason, modellers have combined the benefits of the simplified 

approach of VARs, with the need for a more structural analysis approach (to 

allow policy evaluation) – by constructing structural models with a VAR as 

reduced form.



SVAR

• Such models are known as Structural VARs (SVARS), and are easier 

to estimate than larger scale simultaneous equation models & easier 

to interpret.

• Most commonly (but not exclusively), the Structural form of the 

SVAR describes the timing of interaction between the variables 

(whether one affects the other contemporaneously / with a lag, etc).

• Preferably, of course, the contemporaneous links imposed should be 

motivated from theory.



SVAR

• Statisticall, the purpose of the structural component of the SVAR is

to specify the orthogonalized error term approach for the Impulse

Response analysis directly– and thus to not rely on the Cholesky

approach, which requires ordering restrictions as discussed.

• It can therefore be considered a restricted form of a VAR, with

restrictions placed on the interactive force between

variables in the system directly.



System of Equations approach

• Perhaps a more insightful (specifically from a 

relationship description perspective) means of 

controlling for the dynamics between series in a 

multivariate setup, is to use a systems of 

equations approach.

• We will do this in two sessions’ time.

• Next we look at cointegration and when and how to 

estimate ECMs and VECMs



End


